Semester Name of the Course Course Code

Major Core II : II : Classical Algebra and Integral Calculus : MC2021

No. of hours per week	Credits	Total No. of hours	Marks	
6	5	90	100	

Objectives:

To give a sound knowledge in Classical Algebra.
To solve problems in applications of Integral Calculus.

со	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	recall the fundamentals of algebraic equations and rules of integration.	PSO - 1	R
CO - 2	apply fundamental theorem of algebra in framing and solving equations	PSO - 5	U
CO - 3	choose appropriate method for transformation of equations	PSO - 2	Ар
CO - 4	develop the skill of evaluation of double and triple integrals over different regions	PSO - 3	Ар
CO - 5	identify Beta, Gamma functions and utilize them for the evaluation of definite integrals	PSO - 5	Ap,E
CO - 6	develop the Fourier Series expansion in any interval and apply the same for solving technical and physical problems	PSO - 4	Ap, An

Unit	Section	Topics	Lectu	Learning outcomes	Pedagogy	Assessment/
			re			evaluation
			hours			
Ι	Theor	y of equations				
	1	Preliminaries about	4	Explain the primary	Lecture	Evaluation
		equations and reminder		concepts of	with	through
		theorem		Fundamental theorem	Illustration	appreciative
		Fundamental theorem		of Algebra		inquiry
		of Algebra		Problems based on		
		Problems based on		reminder theorem		
		reminder theorem				
		Problems based on				
		Fundamental theorem				
		of Algebra				
	2	In an equation with real	3	To distinguish	Lecture	Evaluation
		coefficients, imaginary		between imaginary		through
		roots occur in pairs		roots occur in pairs		quizzes and
		In an equation with		and irrational roots		discussions.
		rational coefficients,		occur in pairs		

Total contact hours:	90	(Including	lectures.	assignments	and tests)
	~ ~	(

	1					
		irrational roots occur in				
		pairs				
		Relations between				
		roots and coefficients				
	2		1		T (
	3	Forming the equation	4	To understand	Lecture	Shp Test
		whose roots are		theFormation of the	With	
		the given equation		equation whose roots	Inustration	
		Example 2 Forming the equation		are in A.P, GP, HP		
		roming the equation				
		Forming the equation				
		whose roots are in G P				
		Forming the equation				
		whose roots are in H P				
	4	Symmetric functions of	4	То	Discussion	Quiz and
		the roots		understandNewton's	with	Test
		Sum of r th powers of		theorem on the sum of	Illustration	1050
		the roots		the powers of the roots	mustration	
		Newton's theorem on the				
		sum of the powers of the				
		roots.				
		Problems based on				
		Newton's theorem				
П	Transfor	rmation of Equations				
	1	Transform an equation	4	To identify the	Lecture	Evaluation
		into another whose		Reciprocal equations	with	through
		roots are the roots of		Standard form of	Eamples	discussions.
		the given equation with		reciprocal equations	1	
		signs changed		1 1		
		Transform an equation				
		into another whose				
		roots are m times the				
		roots of the given				
		equation				
		Reciprocal equations				
		Standard form of				
		reciprocal equations				
	2	Any reciprocal	4	To solve different types	Lecture	Evaluation
		equation can be		of reciprocal equations		through
		1		1 1		U
		reduced to a Standard				appreciative
		reduced to a Standard reciprocal equation				appreciative inquiry
		reduced to a Standard reciprocal equation Solving different types				appreciative inquiry
		reduced to a Standard reciprocal equation Solving different types of reciprocal equations				appreciative inquiry

		decreasing the roots of				
		a given equation by a				
		given quantity				
	3	Removal of terms	4	To calculate problems	Lecturewit	Formative
	_	Descarte's rule of signs		related to Descarte's	h	Assessment
		Descarte's rule of signs		rule of signs	Illustration	Test
		for negative roots				
		Problems related to				
		Descarte's rule of signs				
	4	Rolle's theorem.	3	To calculate problems	Group	Slip Test
		Problems related to		related toRolle's	Discussion	1
		Rolle's theorem.		theorem		
III	Double i	ntegrals			1	
	1	Introduction about	3	Explain the primary	Lecture	Evaluation
		integration and Double		concepts of Double	with	through
		integrals		integrals	Illustration	discussions.
		Evaluation of double				
		integrals with constant				
		limits in cartesian co-				
		ordinates				
		Evaluation of double				
		integrals with constant				
		limits in polar co-				
		ordinates				
	2	Evaluation of double	4	Calculate the integrals	Lecture	Evaluation
		integrals with variable	-	over a specified region	with	through
		limits in cartesian co-		bounded by straight	Illustration	appreciative
		ordinates		lines		inquiry
		Evaluation of double				mquary
		integrals with variable				
		limits in polar co-				
		ordinates				
		Evaluation of double				
		integrals over a				
		specified region				
		bounded by straight				
		lines				
	3	Evaluation of double	4	To apply the double	Lecture	Formative
		integrals over a		integrals over a		Assessment
		specified region		specified region		Test
		bounded by different		bounded by different		
		curves		curves		
		Working rule for				
		changing the order of				
		integration				
		Problems on changing				

		the order of integration				
	4	Introduction about	4	Evaluate the double	Lecture	Slip Test
		triple integrals		integrals and triple	and group	-
		Evaluation of double		integrals	discussion	
		integrals with constant		C		
		limits				
		Evaluation of double				
		integrals with variable				
		limits				
IV	Beta and	l Gamma functions				
	1	Definition and	4	Explain the primary	Lecture	Evaluation
		existence of Beta and		concepts of Beta and	with	through
		Gamma functions		Gamma functions	Illustration	discussions.
		Properties of Gamma				
		function				
		Properties of Beta				
		function				
		Relation between Beta				
		and Gamma functions				
	2	Computation of Beta	4	To understand the	Lecture	Evaluation
		and Gamma functions		theorems and problems	and group	through
		Evaluation of integrals		based on Beta and	discussion	Assignment
		using properties of		Gamma functions		6
		Gamma function				
		Equivalent definitions				
		of Beta function				
	3	Evaluation of integrals	4	To know	Lecture	Formative
	_	using properties of		aboutproperties of Beta	with	Assessment
		Beta function		function	Illustration	Test
		Finding the value of				
		standard definite				
		integrals in terms of				
		Beta and Gamma				
		functions				
	4	Duplication formula	2	To understand	Lecture	Slip Test
		Deductions using		Duplication formula	with	~ <u>r</u>
		Duplication formula		F	Illustration	
V	Fourier	series				
	1	Definition and basic	4	Explain the basic	Lecture	Evaluation
		properties of odd and		properties of odd and		through
		even functions		even functions		discussions.
		Introduction of Fourier				
		series expansion				
		Computation of				
		Fourier coefficients				
	2	Development of	4	To understand Fourier	Lecture	Formative

	Fourier series over an		series expansion and	with	Assessment
	interval of length 2π		half range Fourier series	Illustration	test
	Deduction of sum of		expansion		
	series from Fourier				
	series expansion				
	Introduction of half				
	range Fourier series				
 2	Development of helf	2	To coloulate Droblems	Lastura	Clin Test
3		3	To calculate Problems	Lecture	Shp Test
	range sine series over		dased on han range	Willi	
	an interval of length π		sine, cosine series over	mustration	
	Development of half		an interval of length π		
	range cosine series over				
	an interval of length π				
	Deduction of sum of				
	series from half range				
	Fourier series				
	expansion				
4	Development of	4	To differentiatehalf	Lecture	Home
	Fourier series over an		range sine series over	with	Assignment
	arbitrary interval		an arbitrary interval	Illustration	
	Development of half		And half range cosine		
	range sine series over		series over an arbitrary		
	an arbitrary interval		interval		
	Development of half				
	range cosine series				
	over an arbitrary				
	interval				

Course Instructor: Dr.L.Jesmalar Course Instructor: Ms. V. Princy Kala & Ms. V.G. Michael Florance HoD:Dr. V. M. Arul Flower Mary HoD(SF): Mrs. J. Anne Mary Leema

Semester: IIAllied IIName of the Course: Vector Calculus and Differential Equations(for Physics and Chemistry)Subject code:MA2021

No. of hours per week	Credits	Credits Total No. of hours	
6	5	90	100

Objectives:

1. To introduce the concept of vector operators.

2. To impart the mathematical knowledge essential for solving problems in Physical Science.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	explain the physical meaning and properties of curl and divergence	PSO - 1	U
CO - 2	practice the computation of line integrals, surface integrals	PSO - 2	Ар
CO - 3	use computational tools to solve problems and applications of partial differential equations of first order.	PSO - 2	Ар
CO - 4	find the complementary function and particular integral of a differential equation by using appropriate methods.	PSO - 5	U
CO - 5	use Laplace transform and their inverse to solve differential equations.	PSO - 3	Ар

Total contact hours: 90 (Including lectures, assignments and tests)

Unit	Section	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/
			hours			evaluation
Ι	Vector	r Differentiation				
	1	Revision of dot and	4	To recall the operations	Lecture	Brainstormin
		cross product of		on vectors and	with	g
		vectors, Definition		understand its functions	Illustration	
		and theorems on				
		differentiation of				
		Vectors				
	2	Gradient of a scalar	3	To study gradient in	Lecture.	Appreciative
		function and its		detail and apply its	Group	inquiry
		properties,		properties to solve	discussion	
		Problems based on		problems		
		Gradient				
	3	Equation of tangent	4	To understand the	Lecture,	Test
		plane and normal		tangent plane and	Small	
		line for a single		normal line and its	groups	
		surface, Equation of		various functions		

		and finding the complementary function				
		coefficients, Formation of		by using an appropriate method		
	1	Linear Differential equations with	4	linear differential equations and to find the complementary function	Debate	choice questions
	Linear L	Introduction of	Δ	To study the basics of	Lecture	Multiple
тп	Linear F	over a plane				
		Evaluation of		integrals		
	4	Definition of surface integrals,	4	To practice the computation of surface	Group Discussion	Seminar
		force, Projection of a surface over a plane		projection	method	Test
	3	Computation of work done by a	3	To compute work done and understand	Lecture, inductive	Formative Assessment
		integrals over curves in a plane, Evaluation of line integrals over curves in a surface		integrals over different surface	based	
	1	Definition of line integrals and work done by a force, Parametric equation of curves Evaluation of line	3	To practice the computation of line integrals To evaluate line	Lecture, problem	Slip test
II	Vector I	ntegration			•	·
		vectors and its properties, Solenoidal and irrotational vectors		irrotational vectors		
	4	Divergence of vectors and its properties, Curl of	4	To study in detail divergence, curl, solenoidal and	Lecture, Jigsaw	Quiz
		the intersection of two surfaces, Angle between two surfaces				
		tangent line and normal plane for				

				1	1	
	2	Finding the	4	To find the particular	Lecture	Test
		particular integral		integral of a differential	with	
		for e ^{ax,} Finding the		equation by using an	Illustration	
		particular integral		appropriate method		
		for cos ax, sin ax				
	3	Finding the	3	To find the particular	Lab	Slip test
		particular integral		integral of a differential		1
		for $e^{ax}f(x)$. Finding		equation by using an		
		the particular		appropriate method		
		integral for $x^{n}f(x)$				
	Δ	Introduction of	1	To study few methods to	Group	Formative
	т	homogeneous	-	convert the	Discussion	Assessment
		linear equations		homogonoous lineer	Discussion	Tost
		Conversion of		noniogeneous intea		1051
				equations into		
		nomogeneous		differential equations		
		linear equations				
		into linear				
		differential				
		equations with				
		constant				
		coefficients				
IV	Partia	l Differential equation	ns			
	1	Introduction of	3	To understand the basics	Lecture	Quiz
		Partial differential		and the formation of	with	
		equations,		partial differential	Illustration	
		Formation of		equations		
		Partial differential				
		equations by				
		eliminating the				
		unknown constants,				
	2	Formation of	3	To study the methods of	Lecture	Test
	_	Partial differential	C	formation and the	and small	
		equations by		solution of partial	groups	
		eliminating the		differential equations	8- ° ° P °	
		arbitrary functions		anterentiar equations		
		Methods of solving				
		Partial differential				
		austions				
	2	Standard form of	2	To study about	Disquesion	Test
	5		3	To study about	Discussion	Test
		Lagrange s		Lagrange's equation and		
		equation, General		the methods to find its		
		solution of		solutions		
		Lagrange s				
		equation				
	4	equation Solving Lagrange's	3	To use computational	Lecture	Brain

		of grouping		and applications of	Discussion	
				partial differential		
				equation of first order		
	5	Solving Lagrange's	3	To use computational	Lecture	Test
		equation by method		tool to solve problems	with	
		of multipliers		and applications of	Illustration	
				partial differential		
				equation of first order		
V	Laplace	Transform		1	1	1
	1	Definition of	3	To know the basics and	Lecture	Test
		Laplace Transform,		the properties of Laplace	and Debate	
		Properties of		Transform		
		Laplace Transform				
	2	Computation of	3	To solve problems on	Lecture	Formative
		Laplace Transform		Laplace Transform	with	Assessment
		of standard			Illustration	test
		functions, Problems				
		on Laplace				
		Transform				
	3	Definition of	3	To know the basics and	Lecture	Short test
		Inverse Laplace		the properties of Inverse	and Lab	
		Transform,		Laplace Transform		
		Properties of				
		Inverse Laplace				
		Transform				
	4	Computation of	3	To use the Inverse	Lecture	Assignment
		Inverse Laplace		Laplace Transform to	and small	
		Transform of		solve the differential	groups	
		specific functions,		equation		
		Problems on				
		Inverse Laplace				
		Transform				
	5	Solving Linear	3	To use Laplace	Lecture	Quiz and
		Differential		transform to solve the	with	Test
		equations using		differential equation	Illustration	
		Laplace Transform				

Course Instructor: Dr. K. Jeya Daisy

HoD:Dr. V. M. Arul Flower Mary

HoD(SF): Mrs. J. Anne Mary Leema

SemesterIIName of the Course: Quantitative Aptitude - II (NME)Course Code: MNM202

No. of hours per week	Credits	Total No. of hours	Marks
4	2	60	100

Objectives: 1.To develop the quantitative aptitude of the students 2.To solve problems needed for various competitive examinations.

Course Outcome

СО	Upon completion of this course the students will be ableto:	PSO addressed	CL
CO - 1	frame equations and solve problems involving ratios and fractions.	PSO - 2	Ар
CO - 2	calculate the area and compare the objects on the basis of their size and area.	PSO - 1	Ар
CO - 3	change the form of the number using logarithm and make tedious and confusing calculations simple.	PSO - 4	An
CO - 4	have sufficient knowledge about the basis of calculation.	PSO - 2	U, Ap
CO - 5	study the concept related to time, speed and distance.	PSO - 4	Ар

Total contact hours: 30 (Including lectures, assignments and tests)

Unit	Section	Topics	Lectu re hours	Learning outcomes	Pedagogy	Assessment/ evaluation
Ι	Problem	s on Numbers				
	1.	Problems on Numbers	3	To understand the basic concepts of numbers	Lecture thro google meet	Online Test
	2.	Framing and solving equations involving unknown numbers	3	To frame and solve equations	Lecture thro google meet	Online quiz, Assignment
II	Problem	s on Trains	•			
	1.	Problems on Trains	2	To study basic concepts	Lecture thro google meet	Online Test, Assignment
	2.	Time taken by a train to cover	2	To solve problems on time taken by a train to	Lecture thro google meet	Online Quiz

		<i>l</i> metres, <i>l</i> + <i>b</i> metres		cover <i>l</i> metres, <i>l</i> + <i>b</i> metres		
	3.	Relation between a train and stationary/moving body	2	To solve problems related to train and stationary/moving body	Lecture thro google meet	Formative Assessment online Test
III	Compou	ind Interest				
	1.	Compound Interest	3	To recall the formulae of Compound interest	Lecture thro google meet	Online Test, Assignment
	2.	Interest compounded annually, half yearly and quarterly, different rates for different years	3	To employ the problems related interest compounded annually, half yearly and quarterly, different rates for different years	Lecture thro google meet	Formative Assessment online Test
IV	Logarith	nms				
	1.	Logarithms	2	To study the rules of Logarithms	Lecture thro google meet	Online Test
	2.	Properties of Logarithms	2	To solve problems by applyingthepropertiesof logarithms	Lecture thro google meet	Online Assignment
	3.	Common Logarithms	2	To solve problems of Common Logarithms	Lecture thro google meet and Group discussion	Online Quiz
V	Area	1		1	1	
	1.	Area - Results on Triangles- Pythagoras theorem, median, centroid	3	To learn the formulae and results	Lecture thro google meet	Online Quiz, Test
	2.	Area of a triangle and rectangle	3	To find Area of the given field	Lecture thro google meet	Formative Assessment online Test

Course Instructor: Dr. M.R. Angel Jebitha, Ms.J.C.MahizhaHoD: Dr. V. M. Arul Flower MaryCourse Instructor: Dr.C.JenilaHoD(SF): Mrs. J. Anne Mary Leema

	distribution, Area property of normal distribution, Problems based on area of normal distribution		functions and to ¹ understand the definition of random variables, their types and related concepts and to apply the techniques to prove the properties of probability and related distributions	Major Core V	Test
4	Quartile deviation for the normal distribution, Fitting of normal distribution, Problems based on Fitting of normal distribution	3	To recall the definition of probability and to detect the different probability distributions which are widely used and to apply the techniques to prove the properties of	Lecture with Illustration	Test

Course Instructor (Aided): Ms.Jancy Vini Instructor(S.F): Ms. V. Mara Narghese

HOD(Aided) :Dr. V. M. Arul Flower Mary Course HOD(S.F) :Ms. Anne Mary Leema

Semester	: IV
Name of the Course	: Groups and • MC1741
Subject code	.WIC1/41

d Rings **L**: DL

Teaching Plan

Unit	Modul	es	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
Ι	Gro	ups.			•		
	1.	De exa	finition and amples on Groups	4	To understand the definition of groups	Lecture with Illustration	Evaluation through test
	2.	De exa Pe	finition and amples on rmutation Groups	3	To understand the definition permutation groups	Lecture	Q&A
	3.	De and cyc	finition of cycle d theorem based on cles	3	To understand the definition of cycle and theorem	Lecture with	Open Book Assignment
	4.	Th and	eorems on even d odd permutations	2	To understand and apply this theorem in various problems	Lecture with Illustration	Quiz
	5.	De exa and	finition amples, theorems d problems of sub	3	To understand the definition and theorems of sub groups	Lecture with Illustration	Group Discussion
	6.	Th gro bas	eorems on cyclic pups and problems sed on cyclic groups	2	To learn the concepts of cyclic groups	Lecture with Illustration	Q&A
Π	Order	of a	n element and Norm	al Sub Gr	oups	-	-
	1.	D ar T	efinition nd heorems on order of a	n 2	To understand the definition and theorems on order of	Lecture with Illustration	Test
	2.	Pı ar	roblems on order of n element	2	To apply the concept of order of an element in problems	Lecture	Open book assignment

	3.	Definition of Cosets and problems on cosets	3	To understand the definition of cosets and problems	Lecture	Q&A		
	4.	Lagrange's Theorem, Euler's Theorem, Fermats theorem	3	To learn Lagrange's Theorem, Euler's Theorem, Fermats	Lecture	Formative Assessment Test		
	5.	Normal subgroups - Definition and Examples	2	To know the definition of Normal subgroups	Group Discussion	Q&A		
	6.	Problems and theorems on Normal Subgroups	2	To apply the Normal subgroups concept in problems	Lecture with Illustration	Slip Test		
III	Isomorphism							
	1.	Definition, theorems and Examples of Isomorphism	4	To understand the definition and theorems based on	Lecture with Illustration	Quiz		

	2.	Cayley's Theorem	3	To learn the	Lecture	SipTest
		and Theorem on		Cayley's theorem		
		Automorphism and		and understand the		
		generators		concept of Automorphism and		
	3.	Definition of Homomorphism	2	To learn the definition of Homomorphism and Examples	Lecture	Test
	4.	Fundamental Theorem of Homomorphism	3	To study the Fundamental Theorem	Lecture	Q&A
	5.	Problems on Kernel	3	To apply Kernel concept in problems	Group Discussion	Brain Storming
IV	Rings	•		• • • • • • • • • • • • • • • • • • •	-	• • • • • • • • • • • • • • • • • • •
	1.	Definition, Elementary properties and examples of Rings	3	To learn the definition of rings	Lecture with	Quiz
	2.	Problems based on Isomorphism of Rings	3	To get the idea of Isomorphism of Rings	Lecture and group	Test
	3.	Types of Rings and Theorems	2	To identify the Types of Rings	Lecture with Illustration	Test
	4.	Examples of Skew fields and Theorems based on Skew fields	2	To apply Skew fields ideain problems	Lecture with	Formative Assessment Test
	5.	Definition and Theorems on integral Domains	1	To know aboutintegral Domains	Lecture with	Assignment
	6.	Characteristic of a Ring	1	To interpret the Characteristic of a Ring	Lecture with Illustration	Quiz and Test
V	Sub Ri	ngs	-	•	-	-
	1.	Definition and Examples of Sub Rings	2	To get the knowledge of sub rings	Lecture with Illustration	Test
	2.	Problems and Theorems on Sub Rings	1	To develop the proof technique and solve problems.	Lecture with Illustration	Q&A
	3.	Definition, Theorems and Examples on ideals	3	To utilize the concept of ideals in examples	Lecture with	Open Book Assignment
	4.	Ordered integral Domains	3	To understand the Ordered integral	Lecture with Illustration	Assignment
	5.	Maximal and Prime Ideals	2	To know about Maximal and Prime Ideals	Lecture with	Quiz and Test
					Illustration	

	-			Homomorphism of Rings	with	
	7.	Unique factorization Domain	2	To understand and analyze about Unique factorization	Lecture with Illustration	Quiz and Test
0	Ξ τ , ,		-		1	-

Course Instructor(Aided): Dr. K. Jeya Daisy Flower Mary

Course Instructor(S.F): Ms. R.N. Rajalekshmi

HOD(Aided) :Dr. V. M. Arul

HOD(S.F) :Ms. J. Anne Mary Leema Major Core VI

Semester	: IV
Name of the Course	: Analytical Geometry - 3 Dimensions
Subject code	: MC1742
	Teaching Plan

Unit	it Modules		Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
Ι	Direct	tion	cosines of a line		-	ł	
	1.	1. Introduction and definition of distance between points and angle between two lines		. 2	To understand the concept of distance between points and angle	Lecture	Test
	2.	2. Definition and problems related to Projection on a line, Direction cosines of a		3	To understand the projection on a line and direction cosines of a line	Lecture with illustrations	Group Discussion
	3. Definition of direction ratios and projection of the line joining two points.		3	To analyze the equations of two skew lines in a simplified form	Lecture	Test	
	4. De Th din of		Finition and corems related to ection cosines he line joining the	2	Acquire the knowledge about direction cosines of the line joining the	Lecture	Test
	5.	Def pro con per par	inition an blems based o ditions for pendicularity and allelism.	d 2 n	To practice various problems related to conditions for	Lecture with group discussion	Group discussion
Π		Th	e Plane	•			
	1.	Def pro Equ diff	Einition and blems based on lation of a plane in Ferent ns,Intercept form	3	To understand the concepts Equation of a plane in different forms	Lecture	Test
	2.	Def pro Ang plan whi	Finition and blems related to gle between the nes ,The ratio in ich the plane	3	To understand the definition of the ratio in which the plane divides the line joining the points	Lecture	Q&A
	3.	Def	Finition and blems on a plane	3	To practice various problems	Lecture	Formative Assessment

		of intersection of two given planes		plane through the line of intersection of two given planes		Test
	4.	Problems based on length of perpendicular, Planes bisecting the angle between two planes.	3	Acquire the knowledge about the planes bisecting the angle between	Lecture with illustrations	Test
III		The Straight Line				
	1.	Definition and methods of finding equation of a line in different forms	3	To understand the methods of finding equation of a line in	Lecture	Quiz
	2.	Problems based on the plane and the straight line	3	To compare the plane and the straight line	Lecture with	Test
	3.	Definition and problems Angle between	3	To Know the concept of Angle between the lines	Lecture with group	Brain storming
	4.	Problems based on CoP planarity of two lines	3	Acquire the knowledge about Co- planarity of two	Lecture with ppt	Assignment
IV	Short	est distance between two lin	nes	-		
	1.	Introduction and definition of Shortest distance between two lines	2	To understand the Shortest distance between two lines	Lecture with illustration	Quiz
	2.	Problems based on The equations of two skew lines in a simplified form	4	To analyze the equations of two skew lines in a simplified form	Lecture	Q&A
	3.	Definitions and Problems based on Intersection of three planes	3	Acquire the knowledge about Intersection of three	Lecture	Slip Test
	4.	Theorem and problems based on volume of a	3	To practice various problems related to volume	Lecture	Formative Assessment Test
V		The Sphere				
	1.	Introduction and Illustrations based on equation of the sphere in its general form	3	To Understand the sphere in its general form	Lecture with	Quiz
	2.	Theorem and problems on determination of the centre and radius of a sphere	2	To determine the centre and radius of a sphere	Lecture	Test
		-				

	tangent from the point to the sphere		tangent from the point to the sphere		
4.	Problems related to Section of sphere by a plane	3	To practice various problems related to Section of sphere by a plane	Lecture	Assignment
5.	Definition of Intersection of two spheres and tangent plane.	2	Acquire the knowledge about Intersection of two spheres and tangent plane.	Lecture with	Formative Assessment Test

Course Instructor(Aided)::Dr.L.JesmalarHOD(Aided):Dr.V. M. Arul Flower MaryCourse Course Instructor(S.F): Ms. V.G. Michael FlorenceHOD(S.F) :Ms. J.AnneMary Leema

Semester		: IV		Allied	Allied			
		Name of the Course Sub code	ject	: Appli Statist MA17	ed ics : 41			
	Unit	Modules	Topics		Lecture	Learning outcomes	Pedagogy	Assessment/ev

				hours				aluation
Ι		Co	rrelation			•		
	1 Definitions and examples of correlation, Properties of correlation coefficient, Problems based on correlation		ems	5	To Recall the definitions of correlation, Properties of correlation coefficient	Lecture	Quiz	
	2	Defin corre Spean Calcu	ition of Rank lation and proving rman's formula, ılating Rank		3	To analyze Rank correlation and to solve the problems.	Lecture	Assignment
	3	Defin regre regre	nition and results based o ssion, Problems on ssion	on	2	To solve the problems on regression	Lecture	Test
	4	Equa	tion of regression lines		1	Apply regression lines in real life problems	Lecture with group discussion	Test
	5	Angle lines.	e between the regression		1	To Learn the Angle between the regression lines.	Lecture	Assignment
П		Test	of significance	-	-			-
	1		roduction on test of nificance, Sampling and es, Definition on Samplin ribution and examples, ndard error for some npling distributions	its ng	3	To solve problems related to test of significance	Lecture with group discussion	Test
	2	Tes	ting of hypothesis and		3	To testing of hypothesis	Lecture	Quiz

		errors in testing of hypothesis, critical values for different levels of significance, Procedure for testing of				
	3	Explanation and Problems of test of significance for single proportions	3	To solve problems related to single	Lecture	Formative Assessment
	4	Probable limits, Test of significance for difference of proportions	2	To solve problems related to Probable limits	Lecture	Test
	5	Problems on test of significance for difference of proportions	1	To solve problems related to difference	Lecture with group	Test
III	Test	of significance for means				
	1	Test of significance for single mean if the standard deviation is known, Problems based on confidence limits for population mean, Problems based on test of significance of means.	4	To Learn some methods to solve the Problems based on confidence limits for population mean and Problems based on test of significance	Lecture	Test
	2	Problems based on test of significance for difference of sample means, Test of significance for single standard deviation	2	To Learn some methods to solve the problems of test of significance for difference of sample means and single	Lecture	Test
	3	Test of significance for equality of standard deviations of a normal population.	2	To learn normal population	Lecture	Test
	4	Problems based on test of significance for standard deviation	2	To test the significance for standard deviation	Lecture	Test
	5	Problems based on test of significance for correlation coefficient	3	To test the significance for correlation	Lecture	Test
IV	Test	of significance for small samples	*		•	
	1	Distinguish large and small samples, Test of significance based on t- distribution, Test for the difference between the mean of a sample and that of a	3	To test the significance based on t-distribution, and the difference between the mean of a sample and that of	Lecture with group	Quiz
1	2	rest for the difference between	2	10 solve problems	Lecture	Assignment

		the means of two samples, Confidence limits for population mean		related Confidence limits		
	3	Problems based on confidence limits for population mean, Test of significance based on F-test	2	To learn the test of significance based on Fs test	Lecture	Assignment
	4	Problems on test of significance based on F-test.	2	To solve problems on test of significance based on F-test.	Lecture	Formative Assessment
	5	Test of significance of an observed sample correlation, Problems on test of significance of an observed sample correlation.	2	To solve problems related to observed sample correlation.	Lecture	Assignment
V	Test l	pased on χ^2 -distribution	b	<u></u>	-	
	1	Introduction on test based on ² χ , distribution- ² χ – test for population	3	To Solve the problems related to χ^2 – test for population	Lecture	Quiz
	2	χ^2 – test to test the goodness of fit	2	To test the goodness of fit for χ^2 – test.	Lecture	Test
	3	Result on χ^2 – test to test the goodness of fit.	2	To learn the Result on χ^2 – test to test the goodness of fit.	Lecture	Formative Assessment
	4	Fit a Poisson distribution for the given data and to test the goodness of fit.	3	To analyze a Poisson distribution.	Lecture	Test
	5	Theorem based on the test for independence of attributes, Yate's Correction.	2	To solve the Problems based on independence of attributes.	Lecture	Assignment

Course Instructor(Aided): A. Jancy Vini Course Instructor(S.F): Dr. C. Jenila

HOD(Aided) :Dr. V. M. Arul Flower Mary HOD(S.F) :Ms. J. Anne Mary Leema

Teaching Plan (2019-2020) Semester - VI

Name of the Course : Complex Analysis Subject code : MC1761

No. of hours per week	Credit	Total No. of hours	Marks
6	5	90	100

Objectives

- 1. To introduce the basic concepts of differentiation and integration of complex functions.
- 2. To use these concepts in higher studies.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	understand the geometric representation of complex numbers	PSO- 1	U
CO- 2	use differentiation rules to compute derivatives and express complex- differentiable functions as power series	PSO- 4	E
CO- 3	compute line integrals by using Cauchy's integral theorem and formula	PSO-3	Е
CO -4	identify the isolated singularities of a function and determine whether they are removable, poles or essential	PSO-1	U
CO- 5	evaluate definite integrals by using residues theorem	PSO-8	Е

Unit	Module	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/ evaluation
I	1	Complex numbers – conjugation and modulus	5	To prove C is a field and some inequalities	Lecture	Assignment
	2	Geometrical representation of complex numbers and n th roots of complex numbers	5	To find magnitude, argument and n th roots of complex numbers	Lecture, Group discussion	Test
	3	Circles and straight lines – general equations and problems	4	To obtain necessary and sufficient condition for the concept inverse points and reflection points	Lecture	Quiz
	4	Regions in the complex plane - definitions and examples	2	To identify regions in C	Lecture with PPT	Assignment
	5	The extended complex plane - definition and problems	2	To determine the point on the sphere that represents the complex plane	Lecture	Test
II	1	Differentiability – definitions and theorems	3	To analyse basic properties of differentiability	Lecture	Assignment
	2	Cauchy Riemann equations – theorems and examples, Alternate forms of C.R equations – theorems and	7	To get necessary & sufficient condition for differentiability	Lecture	Formative Assessme nt

		problems				
	3	Analytic functions – definition and problems	5	To discuss some properties of analytic function	Lecture	Test
	4	Harmonic functions – definitions, theorems and problems	7	To find analytic functions	Lecture with group discussion	Assignment
	5	Bilinear transformations – elementary transformation and cross ratio	7	To determine the image of given region under bilinear transformation	Lecture with PPT	Test
III	1	Definite integral – definitions, theorems and examples	4	To evaluate definite integral	Lecture	Assignment
	2	Cauchy's theorem – definition and theorems	5	To prove Cauchy's theorems	Lecture	Test
	3	Cauchy's integral formula – theorems and problems	5	To evaluate integrals	Lecture with group discussion	Test
IV	1	Taylor's series-	5	To expand given function as Taylor's series	Lecture	Assignment

		Taylor's theorem and problems			with group discussion	
	2	Laurent's Series – Laurent's theorem and problems	5	function as Laurent's series	Lecture	Assessment
	3	Zeros of analytic functions – definition and problems	3	To determine zeros of analytic functions	Lecture	Assignment
	4	Singularities – definitions and examples	2	To find singularity of a given function	Lecture	Test
V	1	Residues –definition, lemmas and problems	5	To find residue of a given function	Lecture	Test
	2	Cauchy's residue theorem – theorems and examples	4	To evaluate given definite integrals	Lecture	Test
	3	Evaluation of definite integrals – method and problems	5	To evaluate given definite integrals	Lecture	Formative Assessment

Course Instructor (Aided): Dr. M. K. Angel Jebitha Mary Course Instructor (S.F): Ms. V. Pincy Kala HoD (Aided): Dr. V.M. Arul Flower HoD (Aided): Ms. J. Anne Mary Leema